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I. INTRODUJCTION

Although contours such as circular error probabilities (CEPs), error

ellipses, etc., are frequently encountered in engineering problens, their ]

meaning is often misunderstood. For example, it is not common knowledge in

the engineering community that a Il (three-dimensional) ellipsoid carries a

different probability confidence level than a la (two-dimensional) ellipse, or I
for that matter a lo (one-dimensional) line segment. Also, there is confusion

over the relationship between elliptical and sphe:ical error contours.

This report attempts to clarify this situation. To help explain, results

are presented heuristically, without rigorous derivation. The discussion

begins with a brief review of the properties of the "normal" probability

distribution.
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II. THE NORMAL CURVE

The most commonly encountered probability distribution in statistics is

the so-called "normal" or "Gaussian" distribution presented in Fig. 1. Here,

the abscissa corresponds to the observations y. The total area under the

curve is equal to unity and the area lying between specified abscissa points

is a measure of the relative frequency of observations between these limits.

The normal curve is completely specified by two parameters, the mean u

and the standard deviation o. Note that the curve is "bell-shaped" and sym-

metric with respect to a line drawn perpendicular to the abscissa at the mean.

The standard deviation a defines the spread of the curve. Figure 2

exhibits three normal curves having equal means but different standard devia-

tions. Curve A with the largest spread has the largest standard deviation and

Curve C the smallest. The symmetric property of the normal distribution re-

quires that 50 percent of the observations fall below the mean and 50 percent

ahove it. In terms of probability, the probaullity for an observation falling

either above or below the mean is 0.50. Approximately 34 percent of the ob-

servations lie in the interval P to p + a. Thus, from the symmetric property,

the probability of an observation falling between P - a and w + a is 0.68.

Since p and a uniquely define a normal distribution, unique probabilities

can be assigned to all regions within this distribution. Thus, Table I prs-
sents probabilities p (k) associated with selected P - ka to p + ka limits.
This table indicates, for example, that 95 percent of the observations lie in

the region specified by k - 1.960 from y - 1.960 a to P + 1.960 a.

Thus far the discussion has been limited to probabilities associated with

a normally distributed scalar variable. In the next section, the scope of the

discussion is extended to encompass variables of two and three dimensions.

7
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Table 1. Table of p(k) vs. k for One-Dimensional Normal Distribution

p(k) k

0.05 0.0627

0.10 0.126

0.15 0.189
0.20 0.253

0.25 0.319

0.30 0.385

0.35 0.454

0.40 0.524

0.45 0.598

0.50 0.674

0.55 0.755

0.60 0.842

0.65 0.935

0.70 1.036

0.75 1.156

0.80 1.282

0.85 1.440

0.90 1.645

0.95 1.960

I

/L

)u- ka. 4L+ka
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11I. ERROR ELLIPSES AND ELLIPSOIDS

Let x and y denote perpendicular axes lying in a plane. Assume that

independent normally distributed observations along these axes have means u
X

and u and standard deviations o and o , respectively (Fig. 3). The lo errory x y
ellipse, pictured in Fig. 3 is defined as that ellipse centered at (px )

X y
with principal semiaxes of a and a . Similarly, -or any real number k, theSx y

ka error ellipse (k - 1,2,3, ... ) is centered at (pxý V ) with principal
y

semiaxes of ko and ka ,
x y

In an analogous tanner, let x, y, and z define three orthogonal coordi-

nates in space. Again, assume independent normally distributed observations

along these axes with means denoted by wxIi y I z and standard deviations by

x$a y, a z (Fig. 4). Then, the ko error ellipsoid is defined as that ellip-

soid centered at (w y, z) with principal semiaxes kax, kay, kaz . One

octant of a Ia error ellipsoid is given in Fig. 4.

Let Pn(k) denote the probability that a given observation falls within a

ko error contour of n-dimensiong; n of 1, 2, and 3 corresponding to line

segments, ellipses and ellipsoids, respectively. This probability is obtained

directly from the so-called "chi-square" probability distribution with n

degrees-of-freedom; n - 1 yielding the normal distribution discussed in the

previous section.

Tables 2 and 3, taken from Ref. 1, extend the one-dimensional results of

Table I to two and three-dimensions. These tables reveal that probability

confidence levels decrease with increasing dimension. Thus, for example, the

la levels are:

p, (1) = 68% - line segment (one-dimension)

P 2 (1) - 39% - ellipse (two-dimensions)

P 3 (1) - 20% - ellipsoid -,three-dimensions)

Here, specifically, p1 (1) is the probabillby that a single random variable

lies within its la limits. Howevei, P 2 (1) and P 3 (1) are probabilities that

all random components lie within the bounding ellipse or ellipsoid. In short,

for n > 1, Pn (1 ) assumes simultaneity, while p1 (1) does not. Indeed, Pn (k)

is always smaller than p, (k) (Fig. 5).

l!U



lI

CLA

-J

SI I I I
I I ,I I I I La.

ui i . ..
I I IXuii

b

i I . I
-- -- - -- -

06

S-CN

SCJ

12

I

I I I I



10 ERROR ELIPO

/y

y

Fi. 4. .o Ero ... ip.oid.

13



A

STable 2. Table of k for Selected pn (k)A

nn

pn (k) 1 2 3

0.05 0.0627 0.320 0.593

0.10 0.126 0.459 0.754

0.15 0.189 0.570 0.893

0.20 0.253 0.668 1.003

0.25 0.319 0.759 1.101

0.30 1.385 0.844 1.193

0.35 0.454 0.928 1.281 j
0.40 0.524 1.011 1.367

0.45 0.598 1.093 1.452

0.50 0.674 1.177 1.538

0.55 0.755 1.264 1.626

0.60 0.842 1.354 1.716

0.65 0.935 1.449 1.812

0.70 1.036 1.552 1.914

0.75 1.156 1.665 2.027

0.80 1.282 1.794 2.154

0.85 1.440 1.948 2.306 1
0.90 1.645 2.146 2.500

0.95 1.960 2.448 2.796

0.98 2.326 2.797 3.136

0.99 2.576 3.035 3.36E

0.995 2.807 3.255 3.583

14
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Table 3. Table of n (k) for Selected k

Pn

k 12 3

0.2 0.158 0.0198 0.00210

0.4 0.311 0.0769 0.0162

0.6 0.451 0.164 0.0516

0.8 0.576 0.274 0.113

1.0 0.683 0.393 0.199

2.0 0.954 0.865 0.739

3.0 0.997 0.989 0.971

4.0 1.000 1.000 0.999

5.0 1.000 1.000 1.000

15

I

t.,



CQI

C0.C

o d

161



IV. SPHERICAL ERROR CONTOURS

One disadvantage of displaying results in terms of error ellipses or

ellipsoids is that several numbers are required. For example, the specifica-

tion of an error ellipse requires three numbers, the magnitude of the two

principal axes and an orientation angle. Similarly, six numbers are required

to specify an ellipsoid, the magnitudes of the three principal axes and three

orientation angles.

A possible alternative is to present results in terms of circles or

spheres having a particular probability level. Although this approach may

seem appealing at first, it has some disadvantages. Unless the principal axes

of the ellipse or ellipsoid are nearly equal, use of the corresponding circle

or sphere can lead to serious errors in engineering judgment, since all infor-

mation regarding preferred directions is lost. In addition, the desired ra-

dius is not easily determined. Special algorithms for this computation are

given (Refs. 2, 4). The cases where P 2 (k) - 0.50 and P 3 (k) 0.50 corre-

spond, respectively, to the well-known circular error probability (CEP) and

spherical error probability (SEP). From Table 2, these last carry probability

levels equal to those of the 1.177-o ellipse and the 1.538-a ellipsoid.

A procedure for computing both the 50 and 95 percent probability circles

from the principal semiaxes of the la ellipse is presented in Appendix A.

This technique uses linear interpolation between values of the principal semi-

axes and radius as listed in the extensive tables of Ref. 3.
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V. COMPARISON OF TWO-DIMENSIONAL ERROR CONTOURS

The analog in two-dimensions to the one-dimensional Gaussian distribution

in Fig. 1 is presented in Fig. 6. Haintaining previous notation, x and y lie

along the principal axes of the error ellipse, and f is the frequency of the

observations, while x' and y' are the observation axes in the x-y plane. It

is observed in this figure, and indeed in general, that principal and observa-

tion axes are not collinear. In statistical terms, this means the observa-

tions are correlated. The probability surface is depicted as a "mountain"

symmetric about the two planes containing the f-axis and one principal axis.

The total volume under the surface is equal to unity. Thus, the volume

intercepted by circular or elliptical cylinders with axes parallel to f is a

measure of the frequency of observations within the enclosed area on the x -

y plane. Of course, circular cylinders yield circular intercepts such as the

CEP and 95 percent probability circle, while error ellipses result from

elliptical cylinders.

Figure 7 exhibits a family of ellipses for the two-dimensional normal

distribution of Fig. 6. These ellipses, all of which have major to minor axis

ratios of five to one, are obtained by slicing the probability "mountain"

parallel to the x-y plane at various heights along the f-axis.

Five of the more commonly encountered contours associated with this

probability distribution; the 1, 2 and 3o ellipses, CEP, and 95 percent

circle, are illustrated in Fig. 8. Superimposed upon this figure are

computer-generated points randomly selected from a population with the same

probability distribution.

One immediately notes that the elliptical representations contain much

more information about the distribution of the points. Thus, for this exam-

ple, the 3a ellipse encloses more points than does the 95 percent circle while

requiring only about half the area. As a general rule, elliptical contours

are preferable except when the magnitudes of the principal axes are nearly

equal.

19
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VI. S1JI'tARY

In ascertaining the relative merits of elliptical vs. spherical error

contours in reporting system errors, the more weighty arguments can be ad-

vanced in favor of the former. Not only do the errot ellipse and ellipsoid

convey more information than the CEP and SEP, they are actually easier to

compute. The sole argument favoring the latter pair is that their specifica-

tion requires only a single number.

However, the utili7ation of la ellipses (or ellipsoids) can be very mis-

leading to the uninitiated. Thus, the temptation to assume that the l1

ellipse encloses at least a majority of cases, as does the one-dimensional

la line segment, is overwhelming. The truth is that the lo ellipse subtends

only 39 percent of the cases. The situation Is even more exaggerated in I
three-dimensions, where the la ellipsoid encloses only 20 percent of the

cases. The alternative is clear. Instead of using la ellipses (or ellip-

soids) one should use 50 or 95 percent ellipses (or ellipsoids). Here the

name itself indicates the percentage of cases subtended and no confusion

t results.
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APPENDIX

COMPUTATION OF 50 AND 95 PERCENT PROBABILITY CIRCLES
FROM THE PRINCIPAL AXES OF THE Ia ERROR ELLIPSE

This appendix contains a technique for computing the radii of the 50 and
95 percent probability circles, R50 and R95, from the major and minor semiaxes

of the 1o error ellipse, denoted X maj and A min respectively. In particular,

the desired radius R is obtained by linear interpolation between values of

X maj, X min and probability as listed in the tables of Ref. 3. The use of

linear interpolation is justified by the observation that the normalized

quantities X min / X maj and R/ X maj are nearly linearly related over wide

regions.

V
Begin by defining the four 10-dimensional vectors

Y50 - (0.6820, 0.7059, 0.7499, 0.8079, 0.8704, 0.9336,

0.9962, 1.0577, 1.1181, 1.1774)

SL50 - (0.0075, 0.02386, 0.04408, 0.05792, 0.06256,

0.06323, 0.06256, 0.06149, 0.06036, 0.05935)

Y95 - (1.962, 1.970, 1.984, 2.005, 2.036, 2.081, 2.146,

2.230, 2.332, 2.448)
SL95 (0.006, 0.008, 0.014, 0.021, 0.031, 0.045, 0.065,

0.084, 0.102, 0.116)

where the Y's and SL's represent values of R / X maj and slope associated with

intervals of 0.1 in X min / X maj for the 50 and 95 percent radii. The proper

component of the Y and SL vectors, I, and the interpolation interval, DEL, are

computed from

X - X 0min / maj

I - Integer part of X + I or 10 whichever is smaller

DEL - X - I

Then the desired radii result directly from linear interpolation via

RS0 - [Y50(I) + SL50(1) DEL] X maj

R95 - [Y95(I) + SL95(I) DELJ A maj

'25
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